Healthcare Districting Optimization Using Gray Wolf Optimizer and Ant Lion Optimizer Algorithms (case study: South Khorasan Healthcare System in Iran)

Authors

  • Hiwa Farughi Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran
  • Jamal Arkat Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran
  • Sobhan Mostafayi Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran
Abstract:

In this paper, the problem of population districting in the health system of South Khorasan province has been investigated in the form of an optimization problem. Now that the districting problem is considered as a strategic matter, it is vital to obtain efficient solutions in order to implement in the system. Therefore in this study two meta-heuristic algorithms, Ant Lion Optimizer (ALO) and Grey Wolf Optimizer (GWO), have been applied to solve the problem in the dimensions of the real world. The objective function of the problem is to maximize the population balance in each district. Problem constraints include unique assignment as well as non-existent allocation of abnormalities. Abnormal allocation means compactness, lack of contiguous, and absence of holes in the districts. According to the obtained results, GWO has a higher level of performance than the ALO. The results of this problem can be applied as a useful scientific tool for districting in other organizations and fields of application.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

OPTIMUM DESIGN OF SKELETAL STRUCTURES USING ANT LION OPTIMIZER

This paper utilizes recent optimization algorithm called Ant Lion Optimizer (ALO) for optimal design of skeletal structures. The ALO is based on the hunting mechanism of Antlions in nature. The random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building traps are main steps for this algorithm. The new algorithm is examined by designing three truss and frame...

full text

Optimum Design of Skeletal Structures Using Ant Lion Optimizer

This paper utilizes recent optimization algorithm called Ant Lion Optimizer (ALO) for optimal design of skeletal structures. The ALO is based on the hunting mechanism of Antlions in nature. The random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building traps are main steps for this algorithm. The new algorithm is examined by designing three truss and frame...

full text

Grey Wolf Optimizer

This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...

full text

Using the gray wolf optimizer for solving optimal reactive power dispatch problem

This paper presents the use of a new meta-heuristic technique namely gray wolf optimizer (GWO) which is inspired from gray wolves’ leadership and hunting behaviors to solve optimal reactive power dispatch (ORPD) problem. ORPD problem is a well-known nonlinear optimization problem in power system. GWO is utilized to find the best combination of control variables such as generator voltages, tap c...

full text

Wind Integrated Thermal Unit Commitment Solution using Grey Wolf Optimizer

Received Dec 24, 2016 Revised Apr 26, 2017 Accepted Jun 14, 2017 The augment of ecological shield and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating renewable energy sources into existing power system. Wind power is becoming worldwide a significant component of the power generation portfolio. Profuse literatures have been reported for...

full text

An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems

Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  119- 131

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023